Incremental Learning Algorithm for Support Vector Data Description
نویسندگان
چکیده
Support vector data description (SVDD) has become a very attractive kernel method due to its good results in many novelty detection problems.Training SVDD involves solving a constrained convex quadratic programming,which requires large memory and enormous amounts of training time for large-scale data set.In this paper,we analyze the possible changes of support vector set after new samples are added to training set according to the relationship between the Karush-Kuhn-Tucker (KKT) conditions of SVDD and the distribution of the training samples.Based on the analysis result,a novel algorithm for SVDD incremental learning is proposed.In this algorithm,the useless sample is discarded and useful information in training samples is accumulated.Experimental results indicate the effectiveness of the proposed algorithm.
منابع مشابه
A New Incremental Support Vector Machine Algorithm
Support vector machine is a popular method in machine learning. Incremental support vector machine algorithm is ideal selection in the face of large learning data set. In this paper a new incremental support vector machine learning algorithm is proposed to improve efficiency of large scale data processing. The model of this incremental learning algorithm is similar to the standard support vecto...
متن کاملResearch on Incremental Learning Method Based on Support Vector Machine Method
An incremental learning algorithm based on support vector machine was proposed to process large-scale data or data generated in batches. Initial goal concept learnt by standard support vector machine algorithm was updated by an updating model. Compared with the existing incremental learning algorithms, this algorithm can achieve the incremental inverse process and the training time is in invers...
متن کاملPREDICTION OF SLOPE STABILITY STATE FOR CIRCULAR FAILURE: A HYBRID SUPPORT VECTOR MACHINE WITH HARMONY SEARCH ALGORITHM
The slope stability analysis is routinely performed by engineers to estimate the stability of river training works, road embankments, embankment dams, excavations and retaining walls. This paper presents a new approach to build a model for the prediction of slope stability state. The support vector machine (SVM) is a new machine learning method based on statistical learning theory, which can so...
متن کاملMachine Learning Algorithm for Prediction of Heavy Metal Contamination in the Groundwater in the Arak Urban Area
This paper attempts to predict heavy metals (Pb, Zn and Cu) in the groundwater from Arak city, using support vector regression model(SVR) by taking major elements (HCO3, SO4) in the groundwater from Arak city. 150 data samples and several models were trained and tested using collected data to determine the optimum model in which each model involved two inputs and three outputs. This SVR model f...
متن کاملIncremental support vector machine algorithm based on multi-kernel learning
A new incremental support vector machine (SVM) algorithm is proposed which is based on multiple kernel learning. Through introducing multiple kernel learning into the SVM incremental learning, large scale data set learning problem can be solved effectively. Furthermore, different punishments are adopted in allusion to the training subset and the acquired support vectors, which may help to impro...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- JSW
دوره 6 شماره
صفحات -
تاریخ انتشار 2011